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Non-Markovian incoherent quantum dynamics of a two-state system
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We present a detailed study of the non-Markovian two-state system dynamics for the regime of incoherent
quantum tunneling. Using perturbation theory in the system tunneling amplitude A, and in the limit of strong
system-bath coupling, we determine the short-time evolution of the reduced density matrix and thereby find a
general equation of motion for the non-Markovian evolution at longer times. We relate the nonlocality in time
due to the non-Markovian effects with the environment characteristic response time. In addition, we study the
incoherent evolution of a system with a double-well potential, where each well consists of several quantized
energy levels. We determine the crossover temperature to a regime where many energy levels in the wells
participate in the tunneling process, and observe that the required temperature can be much smaller than the
one associated with the system plasma frequency. We also discuss experimental implications of our theoretical

analysis.
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I. INTRODUCTION

It is difficult to overemphasize the importance of the dis-
sipative dynamics of a two-state system (TSS). In general,
standing as a first hand approximation of a much rather com-
plex level structure, the model of a TSS coupled to a dissi-
pative environment'? has been successfully applied to sev-
eral physical systems. Indeed, the dissipative TSS dynamics
is the paradigm for the study of superconducting devices
containing Josephson junctions,? two-level atoms in optical
cavities,* electron transfer in biological and chemical
systems® and semiconductor quantum dots,® to name just a
few.

Despite its simplicity, the description of the TSS dissipa-
tive dynamics imposes great theoretical challenges, espe-
cially when considering non-Markovian processes. This is
the case for the analysis of the environment low-frequency
noise spectrum, since the long-lived feature of its fluctua-
tions does not allow for a “memoryless” bath (Markov) ap-
proximation. In the context of a weak TSS-bath coupling,
theoretical efforts have been made to quantify the low-
frequency effect for both spin-boson’ and 1/f noise®® mod-
els.

Furthermore, it has been largely demonstrated that low-
frequency noise plays important role in the decoherence pro-
cess of superconducting devices containing Josephson
junctions.'®!* Since those devices are seen as promising
candidates to the physical implementation of a quantum bit,
this subject has rapidly grown in interest and several studies
on describing the microscopic origin and characterizing the
low-frequency noise in such devices have already been put
forward.!5-18

Understanding the evolution of a TSS also plays an im-
portant role in understanding the performance of an adiabatic
quantum computer'® in the presence of noise.”*>3 This is
because for many hard problems the bottleneck of the com-
putation is passing through a point where the gap between
the ground state and first-excited state is very small. Near
such an energy anticrossing, the Hamiltonian of the system
can be truncated into a two-state Hamiltonian?® and in the
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regime of strong coupling to the environment the two-state
results discussed in this paper may be directly applied.

Here, following a previous work,”* we put forward a de-
tailed study of the TSS dissipative dynamics in the presence
of low-frequency noise, for the regime of strong TSS-bath
coupling. We show that, for the regime of small tunneling
amplitude A, dephasing takes place much earlier in the evo-
lution, leading the system to incoherent quantum dynamics.
We employ such a property to derive equations that describe
the non-Markovian evolution of the system’s density matrix.

The paper is organized as follows. In Sec. II, we present
the system Hamiltonian and a formal solution for the time
evolution operator. Assuming second-order perturbation
theory in A, we calculate in Sec. III the short-time dynamics
of the system reduced density matrix elements. Section IV
presents a discussion regarding the non-Markovian behavior
of the system when the environment is in equilibrium. We
determine conditions under which the system reaches the
detailed balance regime. Section V provides a systematic
derivation of an equation of motion for the system evolution,
which in general is nonlocal in time. We also discuss regimes
in which the equations governing the diagonal part of the
density matrix become f-local. Considering a double-well
potential, Sec. VI puts forward the analysis of intra- and
interwell transitions and situations where a classical mixture
of states participate in the quantum tunneling process.
Finally, Sec. VII presents our concluding remarks.

II. SYSTEM HAMILTONIAN
We start by considering an open two-state system with
Hamiltonian

H=- é[A(t)(rx+ e(r)oz]—%azQ+HB’ (1)

where Q is an operator acting on the environment described
by the Hamiltonian Hp.

In order to determine the system evolution operator
U(t,,t,), we proceed through two simple steps. First, we
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write the state vector of the system Hamiltonian (1) as
|y(t))=e™B| (). (h=kg=1 through this paper.) Thus, one
finds that the state vector |¢(#)) evolves in time according to
i]e(0)=[Ho(1)+V(1)]|¢(1)), where

Hy(1) == 500~ 50.00), V)=-3M0)o,, ()

and Q(1)=ef'B'Qe 8! The environment is assumed to fea-
ture fluctuations following Gaussian distribution, therefore
all averages can be expressed in terms of the correlation
function or its Fourier transform, the spectral density:

S(w) = f dre™(Q(1)Q(0)), 3)

hence we do not need to specify Hp.??

The next step is to make use of the interaction picture,
considering V(z) as the perturbation. The state vector in the
interaction picture is defined by |@,(1)) = Uj()|@(1)), and any

operator O is transformed by é,(t): US(I)OUO(I), with

Up(r) = Te~Toto)dr" Texp{i% f [e(r') + Q(t’)]dt’} ,
0
(4)

where 7 denotes the time ordering operator. Now, the state
evolution is determined by the interaction potential

i) =~ 38005, 5)

where ﬁx(t)=U$(t)axU0(t). The time evolution operator in
the interaction representation reads

Ullty,1)) = 773_[ng’””’~ (6)

Finally, we can write a formal solution for the complete time
evolution operator as

Ulty,1)) = Teil2HOd: = MU (6,) U (ty,1,) U (1)) €M1
(7)

In this paper, we are interested in the strong coupling regime
in which the root-mean-square value of the noise

o ® dw 12
WE\"<Q2>=<I ;TS(w)) ; (8)

is much larger than the tunneling amplitude: W= A. Physi-
cally, W is basically the uncertainty in the energy bias e(r)
and therefore represents the broadening of the energy levels.
In the above regime, consequently, the broadening of the
energy levels is larger than the minimum gap and therefore
the gap will not be well defined. On the other hand, as we
shall see, for the case of low-frequency noise, W represents
the dephasing rate of the system. Thus, the above regime is a
limit, in which the qubit loses quantum coherence before it
can tunnel, i.e., the dynamics is incoherent.
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III. DENSITY MATRIX CALCULATION

We would like to study the evolution of the reduced den-
sity matrix. Let pgz(7) denote the total density matrix of the
system plus bath. We therefore have

pSB(t) = U(I’O)PSB(O) UT(LO)
= e MUy (1) U(1,0)pss(0) Uj(1,0)Uf ()™, (9)

The system reduced density matrix is defined by p(z)
=Trg[pss(t)], where Trg[...] means averaging over all envi-
ronmental modes. We assume that the density matrix at ¢
=0 is separable, i.e., pgz(0)=p(0) ® py, where pg=e 8T is
the density matrix of the environment, which we assume to
be in equilibrium at temperature 7. Under the assumption of
separability of the initial density matrix, we consider that the
system evolution immediately follows an initialization in a
definite state, implemented, e.g., through a state measure-
ment.

If A is the smallest energy scale in the problem, we can
approximate U,(¢,0) by performing a perturbation expansion
in A, which up to second order reads

. t
Uf1,0) =1+ éj dt' A(t")a (1)
0

— lf’ J’, dt,dt,,A(t,)A(t”)&x(t,)&x(l",), (10)
4 0YJ0

If the time interval 7 is not small enough to make the above
integrals small, i.e., t=1/A, the higher-order terms in A
must be considered in the expansion.

A. Off-diagonal elements of p

To zeroth order in A, we have U,(1,0)=1, therefore

psp(t) = e B Uy(1) psp(0) US(t)e"”B’. (11)

For this case, since [Uy(1),0,]=0, the o, populations of the
system reduced density matrix p are constants of motion.
Therefore, in the representation of the eigenstates of o,
0.|0)=—-[0)(c|1)=|1)), only the off-diagonal elements of p
present dynamics, which, due to the coupling to environ-
ment, decay in time. This case constitutes the one of a pure
dephasing dynamics. It has been subject of interest for many
areas, where several approaches have been used to calculate
the off-diagonal elements of p. Few examples are the (a)
spin-boson model assuming a power-law behavior for the
spectral density of the bath;?”?® (b) spin-fermion model,?*-"
and (c) spin-two-state fluctuators system.® Here, we consider
a bosonic bath, but do not have to specify the form of the
bath spectral density. To quantify this decay, let us write the
reduced density matrix as

p(t) = > szj(l)|i><j|~ (12)

i.j=0,1

We find for the off-diagonal element
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poi(1) = Trp[{0|Uo(1)ps(0) Ug(1)]| 1)1 = pos (0)
< e—ifge(t’)dz’<,}e-i/zfg,g(z')dr’Te—i/zng(t’)dz’>’
(13)

where (...)=Trg[pg...] and ’frepresents the reverse time
ordering operator. We expand the exponentials, group those
in the same order, take the average of each term, and bring
them back to the exponent. Because of the Gaussian nature
of the environment, it is sufficient to expand up to second

order in Q. One finds
<§~e—i/2 J6QU" ' ap-ir2 f()Q(z’)dr'> = 120 Tod"(QG QW)

= o120 dw2mfid ot e 'S w)

(14)
Thus, using Eq. (14) in Eq. (13), we obtain
S sin“(wt/2
poi (1) = e ol ) XGXP{—J —S(w) (w )}Pm(o)
(15)

This equation represents a complicated decay rate, which is
in general not a simple exponential function of ¢. However,
in two limits it can be simplified. First, for the case of white
noise, i.e., S(w)=S(0), it gives
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POl(t) — e—ifoe(t’)dt’—1/2S(0)pol(0) i (16)

which leads to dephasing rate 1/t¢=%S(O), as expected for
white noise.

Another interesting limit is when S(w) is dominated by
low frequencies so that one can use sin x=x to get
il (1Y e 2.2

ife(t")dt' =1/2W=r P01(0),

poi(t) =e (17)

where W is the energy level broadening given by Eq. (8).
The decay is now a Gaussian, whose width determines the
dephasing rate, 1/T¢,: W. For the case of 1/f noise, where the
cutoff of S(w) is not sharp enough, one gets a logarithmic
correction to the above equation.?

B. Diagonal elements of p

The evolution of the diagonal part of the density matrix
happens in a time scale much larger than 1/W. The complete
evolution is given by

p(1) = Trg[Ug()) U(£,0)p(0) psUS (1,00 U(N].  (18)

Let us assume the initial condition p(0)=]0){0| and try to
calculate p;;(z). To zeroth order in A, we have p,;(1)=0 as
expected, thus we find that the first nonzero contribution to
p1,(7) comes from the first-order term in A of (10):

pui(t) = él_lf dﬁj di A(1))A(ty) X Trg[(1]7(11)|0)pp(0]G(12)[1)]
0 0

=i f dy f dty A (1) A1) X Trg[(1{U(11) Ug(11)| 1) p(0| Ug(12) Up(1)]0)]
0 0

f dt, f diA(t)A (1) oilpett N’ <r]~ez/2f 200" )di' T2 GO Vi T,=il2[ Ul -ir2 o’ )dt>

where in the second equality we have used &.(¢)
= Ug(t) o Uy(t)= Ug(t) Uy(1)o,. One can calculate the expecta-
tion value by expanding the exponentials and keeping only
the second order terms. The last two lines of Eq. (19) be-
come

1+ 1ft2 a’t’Jt1 dr'{Q(t")o(t"))
2J)o 1
1 (™ 3|
+ Ef dt'f dr'{Q(")o(t")). (20)
1 0

Substituting the inverse Fourier transformation (Q(¢')Q(¢"))
=f‘21—:‘;e"""(’l"”)S(w), we find

(19)
|
dw S
1+f w (‘”)[ i0lti=2) _ 1 4 i(sin wt, — sin wt)]
27 W?
do S(w
-1 +f —wg(cos or-1)
27 o
do S(w) wT
—i| ———5| sin 07-2 sin—cos w7’ (21)
27 W 2

where 7=1,—1, and 7' =(t,+1,)/2.

If the noise spectral density S(w) is dominated by low-
frequency noise such that for all relevant modes w7<<1, one
can expand the sin w7 and cos w7 in Eq. (21) to get
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1 (" 7
p“(t)%—f dr’f dTA(T’+Z>A<T'—I)
4,7 ) 2 2

« e—W272/2—i(6p(T’)T—fz/glzé(T,H,)df')’ (22)

where 7=min[27',2(t—7')], W is given by Eq. (8), and
do S
e1) = J 405 (| _ cos w). (23)
27T

Equation (22) conveys the nonlocality in time, expected for a
non-Markovian environment. If within time 7~ 1/W, &(r)
and A(7) do not change much (or even if A(z) is a fast but
linear exponential function), we can write Eq. (22) as

1" [ )
pu(t) = Zf dT’Az(r’)f drell e )6 ()= W P12 (24)
0 7

Therefore, for t=<1/A(t), we find the leading term for system
population rate change given by

A%(1)

13
pri(t) = f dTei[E([)_ép(t)]T_Wsz/Z. (25)
=t

If t>1/W, due to Gaussian envelope of the integrand, we
can extend the integration limits of Eq. (25) to *, obtaining

pri(t) = Fpe‘[f(f) - ep(t)]z/zwz’ 06)
with the peak value of the functions given by
A2
L\ 27)

It is worth recalling that for times 1= 1/A, Eq. (10) does not
represent a fair approximation to U(z,0), hence the correc-
tions to Egs. (24)—(26), due to higher powers of A, become
appreciable and must be considered.

In Sec V, we present a detailed study for the general equa-
tion of motion of the reduce density matrix consistent with
Eq. (26). However, before we reach that stage, it is worth
discussing a simpler system with a time independent Hamil-
tonian, and deriving some general features for €,(t) behavior.

IV. MACROSCOPIC RESONANT TUNNELING

Should €, be constant in time and the Hamiltonian (1) be
time independent, one could directly read (26) as an approxi-
mation for the equation of motion

p11(8) = I'_pgo(t) = T, pyy(2), (28)

since the off-diagonal elements of p(f) become negligible for
times t= 1/W. The rate I'_(T",) then represents the |0)—|[1)
(|1)—10)) system transition rate. Thus, for the regime 1/W
=<t=<1/A(), the evolution is described by Eq. (26). The
same argument holds when €,(7) is a function of time, but in

P
that case the tunneling rates will be time dependent:

Fi(l‘) — I‘pe—[e + ep(t)]2/2W2. (29)

An experimental realization of such a tunneling process in a
macroscopic quantum device such as a superconducting flux
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qubit is called macroscopic resonant tunneling (MRT). The
tunneling rates I'. are therefore simple shifted Gaussian
functions described by Eq. (29). An immediate consequence
of Eq. (23) is that the shift €, vanishes for a classical noise,
for which S(w) is symmetric. Therefore, a nonzero value of
€, is a signature for quantum nature of the noise source.

If the environmental source is in equilibrium at tempera-
ture 7, then the symmetric and antisymmetric (in frequency)
parts of the noise intensity are related by the fluctuation-
dissipation theorem:

S(w) = sa(w)coth(2—T> . (30)

Therefore the fluctuation-dissipation theorem relates W and
€,(t), which are functions of S; and S, respectively. Let us

first define
dw S(w)
=P| ——, 31
6p0 fzw ® ( )

with P representing principal value integral. In the case of
low-frequency noise, when all the relevant frequencies are
small on the scale of temperature 7, i.e., <<T, one can write
coth(w/2T) =2T/w. In that case Egs. (8), (30), and (31)
yield

W2 =2Te€,. (32)
One therefore finds

doS(o)

€,(t)=€,0— Pf Py cos wt. (33)

T W

The effect of the last term depends on how small or large 7 is
with respect to the time response, 7z~ w;', of the environ-
ment. Here, w, represents the characteristic energy of the
environment. To understand this let us consider different re-
gimes.

A. Large w, (short 73) limit

If . is large compared to 1/¢, where ¢ is the typical time
scale of interest, then the integral in Eq. (33) covers many
oscillations of the cosine function and therefore vanishes. In
that case

e
=~ €,= ., (34)

€, =
"= oT

P

consequently being independent of t. For a time-independent
Hamiltonian, Eq. (29) then yields

T.(e)=T,ele® sl W, (35)
in agreement with Ref. 24. It is easy to see that
I' () /T
=e’, 36
¢ 1)

which (in the limit A —0) is the detailed balance (Einstein)
relation. Therefore, the transition rates (35) support thermal
equilibrium distribution of the system states, which is a natu-
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ral consequence of the fast environmental response.

B. Small w, (long 75) limit

If the environment’s response is slow compared to time
scale of the problem, i.e., w.<<1/t, the cosine function in Eq.
(33) will be close to 1 at all times, making €,~0, again
independent of t. For a time-independent Hamiltonian, there-
fore, we get

[_=T,=T,e <", (37)

Such transitions obviously do not satisfy the detailed balance
relation and do not lead to equilibrium distribution.

Indeed, an environment in w.— 0 regime behaves as a
static (classical) noise source. To see this, let us consider
Hamiltonian (1) with a static noise source Q that does not
vary much during the evolution and has a Gaussian distribu-
tion:

—-0¥2w?

P(Q) = (38)

\'/;TW .

In small A regime, the tunneling rate from state |i) to state |;)
can be calculated using the Fermi Golden rule

Ti=2al(VIHIPSE; - E)), (39)

where V=Ao0,/2 is the perturbation potential. Therefore, for
every realization of Q, one finds

I(Q)=T,(Q)= ié(ag) (40)

Averaging over all possibilities of Q, we find

mA? -Enw?
F_:F+:T dQP(Q)8(e+ Q) =T e , (41)

which is the same as Eq. (37).

C. General o, (73) regime

In general, away from the above two limits, e,,(t) is a
time-dependent function given by Eq. (33). The explicit
functionality depends on the spectral density S(w), especially
on its characteristic frequency w,. To see this, let us assume

a simple spectral density
2nw ( 1 )
[1+(0/w)PP\1 =)’

for which analytical solutions is possible. Substituting Eq.
(42) in Eq. (33), we find

S(w) = (42)

= = -
(43)
We can therefore write
0, wr<l1
&1)= ,,o<1—e-wc’<1+rwc>>:{6po’ VRN

which yields the above two limiting results in the appropriate
regimes with an exponential crossover between the two lim-
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its. Indeed, the above behavior of € (t) i.e., the crossover
from O to €,, within time scale ~1/w,, is generic regardless
of the functlonal detail of €,(r). The time scale 7z~ 1/,
represents the response time of the environment to an exter-
nal perturbation. If #> 7, then the environment has enough
time to enforce equilibrium to the system, resulting in e,
=€,0, Which is required for detailed balance (i.e., equilib-
rium) condition. On the other hand, if 7 << 7%, the environment
cannot respond quickly to the system and the equilibrium
relation is not expected. In that case, we find ep=0, i.e., the
environment behaves as a classical noise. In the next section
we shall see how such behavior results in time-nonlocality of
the equation of motion.

V. NON-MARKOVIAN EQUATION OF MOTION

Equation (26) gives the short time (1/W=<t=<1/A) evo-
lution of the diagonal part of the density matrix. As soon as
t becomes comparable to A, higher order corrections become
important and the second order perturbation used in Eq. (26)
becomes insufficient. Instead of introducing higher-order
corrections which is a cumbersome task, in this section we
take a different path: We write a general equation of motion
expected for the evolution of the density matrix for a system
like ours and find its parameters in such a way that it agrees
with Eq. (26) for short times.

In general, the equation of motion for the evolution of the
density matrix is nonlocal in time, reflecting the non-
Markovian nature of the environment. Since the off-diagonal
elements vanish very quickly (within #~1/W), for time
scales larger than 1/W, one can write the dynamical equa-
tions only in terms of the diagonal elements of p. Generally,
for a non-Markovian dynamics the equation of motion for
p(t) depends on the history

t

dr'[K_(t,1")poo(t") —

—o0

pui(t) = K (t.1')pn ()], (45)

where K..(7,1") are nonlocal integration kernels. Let us from
now onwards consider a time-invariant Hamiltonian for
which

pri(1) = f d'[K_(t—1")poo(t") = K (t=1")py ()]
(46)

If the system starts the evolution from state |0) at time t=t,,,
the short-time evolution is described by

t 1,
p1() = f dt'K_(t—-1") =f dtK_(7). (47)
1 0
This should agree with Eq. (26), therefore
1
f dTK (1) = AL(t—19) 0t — o), (48)
0

where we have defined functions
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Ai(l‘) = Fpe—[e * ep(z)]z/zwz. (49)

The presence of the 6-function is necessary to ensure causal-
ity to the system dynamics, since we assume that the evolu-
tion follows a state initialization at #,. Taking the derivative
of both sides of Eq. (48), we find

3/\:(7')
aT

K.(7)= 0(7) + A(7) (7). (50)
Notice that for constant transition rates A+ (7)=1"-, Eq. (50)
leads to

p11(1) =T _poo(t) =Ty pyy (1), (51)

which, as expected, is t-local.

In the limit w,— 0, where the change in A. happens on a
time scale (1/w,) much larger than the time evolution con-
sidered here, the time derivative in Eq. (50) can be neglected
and one obtains Eq. (51) with transition rates I'.=A.(0)
=Fpe‘52/ 2 with €,(1)=0, as expected for a static noise.

On the other hand, in the w,— o° limit, variations of A_(7)
happen in a very short time, hence JA.(7)/dT—0 for t
= 73~ 1/ w,.. Therefore the ¢’ integration in Eq. (46) is basi-
cally between 7— 73 and 7. If within this short range p(¢’) does
not change much, one can bring it outside the integral. In that
case, Eq. (46) leads to Eq. (51) with I'n=A.(t—»)
=T, =502V \ith €,(1)=¢,, which is expected in the
detailed balance regime.

Both of the above regimes led to #-local equations for the
diagonal part of the density matrix. However, for finite w,, in
general, one gets a nonlocal equation in time. If the system
evolution is slow compared to the time scale 7~ 1/ w,, one
can substitute the Taylor expansion p;(t")=p;;(t)+(¢'
—1)p;;(t) into Eq. (46) obtaining

p11(1) = A_(t)poo(t) = A, (1)1, (1)

() J l a5

0

where A(f)=A_(t)+A (7). Solving for p;,(z), one finds Eq.
(51) with transition rates

I, = A () _

1- f“ drrdA(D/or 1- f“’ drA(e) = A(7)]

0 0

AL()

(53)

where in the last step we have used integration by parts. The
integral limit was taken to infinity, since the integrand very
quickly vanishes for 7=1/w,. All the nonlocal behavior is
captured in the denominator of Eq. (53).

The integrand (53) is maximum at 7=0, but very quickly
vanishes within 7~ 1/w,, hence [jd7A()—A(7)]~[A()
-A(0)]/ w,, leading to

_ As()
T 1=[A(®) - A0,

Using Eq. (49), we obtain

(54)
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A=) = A(0) = Fp(e_(e_ €0 2W2 | p=(e+ €022 _ 26_52/2W2)
= 2rpe—e2/2w2<€_e;0/zwz coshz—eT - 1). (55)

Therefore, to the lowest order in I',/ w,, we get

I'.(e) = Fpe_(e = &0) 120

2r
X{l + —Ee‘ez/zwz<e‘€1210/2W2 coshz—ET - 1) } (56)

w,

The magnitude and the position of the peak of I'_(e) are
given by (to the lowest order in I',/ w,)

Fpeak = F—(epo) =~ Fp(l + Fp/wc),

€ = ,,0<1 oo §0’2W2>. (57)
wC

The peak value is enhanced by the nonlocal effects. The peak

position is also shifted, but by a very small amount due to the

exponential suppression. Notice that the peak becomes

asymmetric around its center due to the nonlocality.

The nonlocal corrections to the transition rates become
negligible when I', < w,. Also, observe that I, is approxi-
mately the peak value of the transition rate (27). Therefore,
nonlocality becomes important only when the maximum
transition rate I', is of the order of or larger than w,, or
equivalently, when the response time (73) of the environment
is comparable or longer than the system transition time
(~1/T),).

VI. MRT IN A DOUBLE-WELL POTENTIAL

So far we have studied incoherent tunneling in an ideal-
ized two-state system. However, for most realistic systems,
the two-state model is only an approximation of a more com-
plicated multilevel problem. An example of such cases is a
system in which the classical potential energy has a double-
well structure and the kinetic part of the Hamiltonian pro-
vides quantum tunneling between the two wells. Experimen-
tal implementation of such a system is possible using
superconducting flux qubits, which have been studied con-
siderably both theoretically and experimentally.>3!=*0 Espe-
cially, MRT measurements have been performed both be-
tween ground states as well as excited states of the wells.3”-3

In such a double-well system, the energy within each well
is quantized, with energy level distributions dependent on the
bias energy between the wells. In general, in the presence of
the environment, a system initialized in one of those levels
can experience two types of evolution: intra- and interwell
dynamics.

The intrawell dynamics are transitions within a single
well, e.g., when a system excited within a well relaxes to a
lower-energy level in the same well by exchanging energy
with the environment. Thus, in this case, the system dynam-
ics is confined in just one well of the potential, with no
tunneling to the opposite well.

It is also possible for the system, depending on the tun-
neling amplitude between the two states, to tunnel to an en-
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ergy level in the opposite well, leading thus to an interwell
dynamics. If the evolution of the system is confined to the
ground states of the two wells and it lies in the incoherent
tunneling regime, then the formalism developed herein can
describe such an evolution in full detail. This, however, is
not the only type of evolution possible for a double-well
system. Here, we also consider possibilities that the evolu-
tion involves the excited states.

A. Tunneling between ground states

At low enough temperatures, the system can only occupy
the lowest energy states within the wells. In such a case,
tunneling can occur between those energy levels if the levels
become in resonance. The probability of the system being
found in state |1) at time ¢ is given by p;;(¢). For a time
independent system initialized in state |0), in the limit r,
<w,, p;;(?) is the solution of Eq. (51). Such a ¢ dependence
can be measured experimentally and is usually an exponen-
tial function with initial value 0 and final value given by the
equilibrium distribution. According to Eq. (51), the initial
slope of p;(¢) gives the transition rate: I'_=p;,(0). Likewise,
if the system is initialized in state |1), one can extract I', in
a similar way. Plotting the resulting transition rates versus
bias €, one obtains the tunneling resonant peaks. By fitting
the experimental data to the shifted Gaussian lineshapes (35)
the parameters €,,, W, and I, can be extracted and from Eq.
(27), A can be obtained. Such a procedure, performed in Ref.
38, successfully confirmed our theory especially the relation
(32) between W and €,

If the transition rate I', becomes comparable to the envi-
ronment’s characteristic energy w,, the t-local Eq. (51) will
not be adequate to describe the evolution of the system.
However, if the nonlocality effect is small, one can still use
the same equation but with I'. defined by Eq. (54), hence
Eq. (56). In such a case, the peak will not be symmetric
around its center, with an asymmetry that dependence on A.
Experimental observation of such an asymmetry is an indi-
cation of time-delayed response of the environment and may
provide information about .. It should be reminded that a
presence of high frequency modes in S(w) may also lead to
deviation from a symmetric Gaussian MRT peak but such an
effect is independent of A hence could be easily distin-
guished from the above nonlocal effects.

Another interesting type of experiment is the Landau-
Zener transition in which e is a linear function of time during
the evolution. For that type of evolution, again in the T,
< w, regime, one can still use (51) but with a time dependent
€. Such a procedure was proved successful in providing ac-
curate description of the experimental data for flux qubits in
Ref. 40.

It should be mentioned that the tunneling rate A in our
formalism may not be independent of € as assumed here. In
practice, as the double-well potential is tilted, it not only
affects the relative positions of the energy levels in the two
wells but also affects the matrix elements between them.
Such dependence is weak for a small bias, but as € becomes
large the effect of modulation of A might become visible.

B. Tunneling to or between excited states

If the energy tilt is large enough so that the ground state of
the initial well becomes in resonance with an excited state of
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the opposite well, tunneling to the excited state can occur.
Alternatively, one may initialize the system in an excited
state in the initial well, via, e.g., microwave excitation and
make the system tunnel between two excited states. It is
therefore important to understand how such a tunneling can
be described within the present theory. One can generalize
the arguments of the previous section to calculate the tunnel-
ing rate. In this case, we need to add intrawell relaxations to
the picture.

In Ref. 24, it was shown that the tunneling rate from state
i) in the left well to state |j) in the right well is given by

[

i(e—€ )=y |t|-1/2W2F
dtel( p) 'Y;]H s

2
=2 (58)

—o0

where € is the bias energy with respect to the resonance point
between |i) and [j), A, is the tunneling amplitude between
the two states, and y;;=(y;+7;)/2, with y; being the intrawell
relaxation rates corresponding to state |i). If one of the states
is the ground state in its own well, then its corresponding
intrawell relaxation rate is zero. The transition rate becomes
a convolution of Lorentzian and Gaussian functions:

A o0 —[e —5]2/2W2
Fl](f) l!yl! .
(e €') +f
* e+
\f—‘Re[ (6 = W’”, (59)
8 ’2W
where
207 (*
4
w(x) = e 1 —erf(= ix)] = —= f edr (60)
NT Jix

is the complex error function. In the limit y;;— 0, the shifted
Gaussian lineshape (35) is recovered. In the opposite limit,
;= W, the peak becomes a Lorentzian with width ;.

C. Multichannel tunneling

So far, we have investigated the dynamics of a definite
single tunneling event between the wells. However, as the
system’s temperature increases, one should expect the in-
crease of probability of thermal occupation of the excited
states of each well. Under such conditions, it becomes un-
known what single tunneling event will take place. Conse-
quently, when predicting the effective tunneling rate between
wells, one has to take into account the statistics of occupa-
tion of excited states and their respective tunneling probabili-
ties to the opposite well, in an ensemble average. The net of
this thermally assisted dynamics is a multichannel tunneling,
which leads to an increase of the measured tunneling rate. As
we shall see, due to the fast increase of the tunneling ampli-
tude A,; between excited states |i) and |j), T does not need to
be too large for this process to become non-negligible. For
simplicity we consider zero bias (e=0) situation in which the
two potential wells are in resonance.

Let A, and I} denote the tunneling amplitude and transi-
tion rate between the nth energy levels in the opposite wells,
and I'. the fotal transition rates between the wells. In ther-
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mal equilibrium, the occupation probability of the nth state
is given by Boltzmann distribution: P,=e EnT/3 e~ EiT,
Therefore

T.(e=> P,I"(e). (61)

At small enough T, one can assume P,~e 0T (for n>0),
where E,=E,—E, is the relative energy of state |n) com-
pared to the ground state (n=0). If y;;<W for the low-lying
energy levels, we may neglect ;; in Eq. (59) and all I, will
have the same Gaussian functional form, leading to

2
F_(E) = E g_EnO/T \/g%e—[é— SP]Z/ZWZ’

A (T
- \/gizv]é_)e_[f' P, (62)
where
A2 12
Aeff= AO 1+ E _’Zle_E”O/T . (63)
n=1 0

Therefore, the net contribution from tunneling events involv-
ing excited states can be seen as a renormalization of the
tunneling amplitude between wells. Since usually A,> A,
such contribution becomes important even at temperatures
much smaller than the plasma frequency w,= E,. The cross-
over temperature 7,, can be obtained by requiring
(A,/Ap)?e~“’T~1, such that the contribution from the first
excited state becomes important:

T,p= —— b (64)
“ 21In(A/A)

Typically A, is a few orders of magnitude larger than A, and
therefore T, can be an order of magnitude smaller than w,.
High-frequency modes of environment may also renormalize
the tunneling amplitude' resulting in a T-dependent A, £ even
at T<T,,. Such a T dependence is typically much weaker
and a crossover to the exponential dependence in Eq. (63)

should be observable.

VII. CONCLUSIONS

We have shown a systematic procedure to determine the
evolution of a two-state system in the regime of incoherent
quantum dynamics. Considering a second-order perturbation
theory in the system bare tunneling rate A, and a Gaussian
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distribution for the environment fluctuations, we have deter-
mined the short-time evolution of the system reduced density
matrix elements.

Under the assumption of high integrated noise W, i.e., a
system-bath strong coupling regime, we verify that, indeed,
dephasing process takes place early in the system evolution,
which sets 1/W as the smallest time scale of the evolution,
justifying the claim of having a system with incoherent dy-
namics.

As for the system populations, we have seen that, in gen-
eral, one should expect complex non-Markovian dynamics.
We were able to clearly demonstrate how the non-Markovian
evolution can be related to the time response of the environ-
ment, 7. Indeed, we have verified that for time scales ¢
> 7, the system follows the detailed balance dynamics. On
the other hand, if the environment response is very slow, i.e.,
1<y, the system sees a static (classical) noise source. In
addition, by investigating the equation of motion for the re-
duced density matrix, we have demonstrated how one can
simplify the non-Markovian effects by introducing modified
transition rates for the dynamical equations.

Finally, we have inspected the intra- and interwell transi-
tion possibilities inside a double-well potential, and quanti-
fied how the multichannel process can lead to an enhance-
ment of the system tunneling. We have determined the
condition for this process to take place, and estimated the
crossover temperature which can be an order of magnitude
smaller than the system plasma frequency o,

Some of the predictions of our theory have already been
confirmed experimentally.¥4? More experiments, however,
are necessary especially to confirm our description of non-
Markovian dynamics. A simple measure of the asymmetry of
the MRT peak in large A regime could be indicative of non-
locality in 7. As described in Sec. V, such an asymmetry
should be A dependent and should disappear at small A. A
A-independent asymmetry could result from high-frequency
components of the environmental noise that make small w7
expansion in Eq. (21) fail. Moreover, a T-dependent measure
of the tunneling rates can reveal the renormalization of the
effective tunneling amplitude A due to high-frequency noise
and the crossover temperature 7,, to the multichannel tun-
neling regime as described in Sec. VI.
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